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Abstract Cells of Kluyveromyces marxianus FII 510700
and Saccharomyces cerevisiae CBS 1907 were autolysed
in phosphate buffer, pH 4.5, for a maximum of 10 days
to compare chemical changes that occur in the carbo-
hydrate, protein, amino acid and nucleic acid content.
Approximately 2.2–3% carbohydrate, 9.5–12% protein,
0.6–1.0% DNA and 6–7% RNA were recovered in the
autolysates. The main amino acids were b-alanine,
phenylalanine, cysteine, methionine, glutamic acid and
isoleucine. No significant differences in the yeast auto-
lysates of K. marxianus and S. cerevisiae were observed.
Consequently, K. marxianus produced from lactose-
based media has potential as a source of yeast auto-
lysates used in the food industry.

Keywords Autolysate Æ Yeast Æ Kluyveromyces
marxianus Æ Saccharomyces cerevisiae

Introduction

Autolysates are defined as concentrates of soluble
components of yeast cells produced by autolysis. During
this process, yeast constituents are degraded by their
own endogenous enzymes. Further, the process is char-
acterized by the loss of membranous function and cel-
lular organization, alteration of porosity of the cell wall,
and subsequent leakage of the degradation products
along with some cell components into the extracellular
environment [3, 14]. At the completion of autolysis, cell

components are separated from insoluble cell walls and
the resulting autolysate concentrated in agitating eva-
porators or falling film evaporators [31].

Yeast autolysates are used mainly in the fermentation
industry as substrates and in the food industry as flavor
improvers [31]. In Europe, the major raw material for
producing yeast extract is primary-grown high protein
strains of Saccharomyces cerevisiae cultivated on mo-
lasses-based media [21, 31, 38]. In the United Kingdom
and in the United States, yeast extracts are also manu-
factured from debittered brewers’ yeast, consisting of
strains of S. cerevisiae. Other raw materials used for the
production of yeast biomass includewaste products of the
timber and agriculture industries, and ethanol [21, 38].

Autolysis of S. cerevisiae has been the subject of
numerous articles, and its mechanism is well understood
[5, 6, 19, 27]. However, for the food grade lactose-
utilizing yeast Kluyveromyces marxianus there is very
little data available on yeast extract production [2, 8, 19].

In this paper we aim to contribute to the under-
standing of extracts from K. marxianus FII510700 grown
on lactose-based media compared to extracts from the
traditional S. cerevisiae (CBS 1907) grown on glucose-
based media, focusing on DNA and RNA hydrolysis,
carbohydrate, protein and amino acid contents.

Materials and methods

Yeast strains, culture conditions and autolysis methods

K. marxianus (FII 510700) was obtained from the Culture Collec-
tion of the University of New South Wales, UNSW 248 (World
Data Center for Microorganisms). S. cerevisiae (CBS 1907) was
obtained from the Department of Food Science and Technology,
UNSW, Sydney, Australia.

For autolysis experiments, K. marxianus cells were grown in a
lactose medium containing: lactose, 20 g l–1; (NH4)2 SO4, 5 g l–1;
MgSO4Æ7H2O, 2 g l–1; KH2SO4, 4 g l–1 and yeast extract 2 g l–1.
S. cerevisiae was grown in a glucose medium (GM) containing:
glucose, 20 g l–1; (NH4)2 SO4, 5 g l–1; MgSO4Æ7H2O, 2 g l–1;
KH2SO4, 4 g l–1 and yeast extract, 2 g l–1. The yeast were cultured
in 500-ml conical flasks containing 100 ml medium and incubated
for 24 h during which time the cultures reached stationary phase.
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The temperature was controlled at 30�C in an orbital shaker (New
Brunswick, Edison, N.J.) at 180 rpm. The yeast cells were har-
vested by centrifugation at 5,000 g for 10 min at 4�C and washed
three times with 0.9% (w/v) saline. One gram of cells was sus-
pended in 30 ml sodium phosphate-citric acid buffer (0.2 M),
pH 7.0. Autolysis was initiated by incubating the suspension at
40�C with orbital shaking at 180 rpm for 10 days [39]. During
autolysis, samples of the suspension were removed daily under
aseptic conditions to check by microscopy for possible con-
tamination, and for analyses of chemical composition. Cell residue
and supernatant (autolysate) fractions were recovered from 5-ml
aliquots of autolysing cell suspensions at days 5 and 10. These were
separated by centrifugation at 5,000 g for 5 min at 4�C. The
autolysate fraction was filtered through a 0.45 lm membrane and
both fractions were stored at 4�C until analyzed.

Amino acids

The concentrations of amino acids in the autolysates were de-
termined using a Beckman 6300/7300 amino acid analyzer (Model
6300; Beckman, Palo Alto, Calif.) fitted with an ion exchange
column (Beckman, 100 mm · 4 mm). The samples and standards
were treated in accordance with the Beckman System 6300/7300
Training Guide [7]. Samples (1 ml) of autolysate were collected in
hyparnized tubes and transferred to 5 ml conical centrifuge tubes.
The samples were centrifuged at 400–800 g for 15 min. Supernatant
(200 ll) was withdrawn and quantitatively transferred to a 400 ll
microfuge tube to which 20 ll 30% sulfosalicylic acid (Sigma,
Sydney, Australia) in water was added and mixed thoroughly. The
mixture was centrifuged for 5 min in a microfuge (Sigma, Munich,
Germany) at 11,000 g. Clear supernatant (100 ll) was withdrawn
and mixed in a 1:1 ratio with a mixture of Li-A and Li-S (lithium
citrate; Beckman, Palo Alto, Calif.) buffer, pH 2.2. Each sample
was then loaded on a sample storage coil (Beckman) and eluted
with Li-A buffer at 20 ml h–1.

Carbohydrates

Total carbohydrate was measured using the anthrone reagent
method [4, 32].

Protein

Protein was estimated with the Folin-Ciocalteau reagent as out-
lined by Lowry et al. [23]. Optical density was read at 500 nm. A
standard curve (0–200 mg l–1) was constructed with bovine serum
albumin as the standard.

Ribonucleic acid

RNA was estimated by the orcinol method [17]; for this analysis the
optical density of the reaction is proportional to the concentration
of RNA in the range 20–250 lg ml–1.

The RNA from 200 mg (dry weight) yeast cells was extracted
after the cells were washed twice with 5 ml 0.9% saline solution and
then with 0.2 M HClO4 to remove sugars and acid-soluble mate-
rials [29]. Cells were hydrolyzed in 5 ml 0.5 M HClO4 by in-
cubating the suspension in a water bath at 70�C for 15 min with
occasional stirring. The mixture was then centrifuged at 5,000 g for
10 min, and the supernatant was transferred to a volumetric flask.
The cells were extracted twice in the same manner and the com-
bined extracts made up to 20 ml with cold 0.5 M HClO4. RNA was
estimated by reaction with the orcinol reagent according to the
method of Ogur and Rosen [26] as modified by Schneider [29].
Autolysates were assayed directly, whereas cell residues were
extracted in 0.5 M HClO4 as described above, prior to RNA esti-
mation by the orcinol procedure. RNA standards (200, 300, 400,
500 and 600 lg ml–1) in 0.5 M HClO4 prepared from standard
yeast RNA (Boehringer Mannheim 109223, Mannheim, Germany)
were similarly treated with orcinol.

Deoxyribonucleic acid

DNA in yeast cells, residues and autolysates was measured by the
diphenylamine procedure [1, 10, 13]. Sample preparation was
similar to that for RNA analysis. The DNA was estimated by
reaction with diphenylamine [13]. A standard curve of DNA con-
centration against optical density was prepared from a stock solu-
tion of calf thymus DNA (400 lg ml–1, Boehringer Mannheim).

Results

Cell composition

The gross chemical compositions of K. marxianus
FII510700 and S. cerevisiae CBS 1907 grown in batch
culture on lactose-based medium and glucose-based
medium, respectively, are shown in Table 1. S. cerevisiae
had a slightly lower content of RNA and DNA com-
pared to K. marxianus, and a slightly higher carbohy-
drate content.

Changes during autolysis

Carbohydrate

Autolysates of both K. marxianus and S. cerevisiae
contained solubilized carbohydrate (Table 2), which,
after 10 days, represented about 2% of the initial weight
of K. marxianus and about 3% of the initial weight of
S. cerevisiae. These low values suggest that the cell walls
were poorly degraded.

Protein

Protein was the main component in the autolysates. It
represented about 8–12% of the initial weight after 5–
10 days of autolysis (Table 2). Differences in protein
content between the two species of yeast or the method
of determination were not significant.

Amino acids

The six most prevalent amino acids in the extracts –
b-alanine, phenylalanine, cysteine, methionine, glutamic
acid and isoleucine –were present in insignificant amounts
[1–4 lg (mg dry weight of cells)–1 before autolysis].

Table 1 Gross chemical composition of Kluyveromyces marxianus
FII510700 and Saccharomyces cerevisiae 1907 grown in batch
culture

Material K. marxianus S. cerevisiae
(% dry weight) (% dry weight)

Protein 56 57
Carbohydrate 26 30
RNA 10 8.0
DNA 2.7 1.2
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Changes in DNA

DNA represented 1.2 and 2.7% of the initial cell dry
weight in S. cerevisiae and K. marxianus, respectively
(Table 1). DNA content decreased during autolysis
(Table 3) and by 10 days had decreased by approxi-
mately 42% in K. marxianus and 55% in S. cerevisiae.
DNA was recovered in the autolysates at concentrations
slightly less than the decrease found in the cells. The
reason for this discrepancy could be due to degradation
by DNAse activity, or to DNA binding.

Changes in RNA

The initial RNA content was about 8% in S. cerevisiae
and about 10% in K. marxianus (Table 1). Cellular
RNA decreased throughout autolysis (4), and by
10 days had decreased by 85% in K. marxianus and 90%
in S. cerevisiae. Only 70% RNA material was recovered
in the autolysate of K. marxianus, while 76% was re-
covered in the autolysate of S. cerevisiae. These amounts
were less than the loss from the cells.

Discussion

The gross cellular composition of yeasts is expected to
vary according to species, method of cultivation and the
phase at which cells are harvested. Nonetheless, from the
results of the gross composition of K. marxianus and
S. cerevisiae, it can be concluded that no significant
differences were found in the carbohydrate and protein
content of the two species. K. marxianus, however,
contained more DNA and RNA than S. cerevisiae. The
amount of RNA estimated in S. cerevisiae (6–8%) was
within the range reported [18, 35]. No value has been

reported previously for K. marxianus. The difference in
the RNA content can be attributed to species variation
and/or culture conditions.

DNA represents a small proportion (0.2–1.5%) of
the dry weight of S. cerevisiae [38]. For both species
examined, DNA was only partially degraded during
autolysis. This may be due to the tendency of DNA to
complex with protein, which may protect it from the
action of DNAses that presumably are involved in its
hydrolysis [37]. While a range of DNAses and RNAses
have been reported from yeasts [9, 12, 30], their in-
volvement in the autolytic reaction has not been studied
systematically [14].

Rapid and extensive degradation of RNA is a well-
studied characteristic reaction of yeast autolysis [16, 34,
35]. The products of RNA degradation, presumably
nucleotides, nucleosides, and purine and pyrimidine
bases, are recovered in the autolysates. In this study,
however, about 10% less RNA material was recovered
in the autolysate than would be expected from the sum
of degradation products assayed (Table 5). A similar
finding was reported by Hough and Maddox [16] and by
Hernawan and Fleet [14]. These data suggest that some

Table 2 Recovery of carbohy-
drate and protein in cell residue
and autolysate of K. marxianus
FII 510700 and S. cerevisiae
CBS 1907

Yeast Autolysis
time (days)

Total carbohydrate Protein

(lg mg–1) (lg mg–1)

Remaining in
cells

In extract Remaining in
cells

In extract

S. cerevisiae 5 280 20 470 93
10 270 30 450 120

K. marxianus 5 240 18 475 82
10 235 22 463 95

Table 3 DNA in yeast cells and autolysate of K. marxianus and
S. cerevisiae during autolysis

Yeast Autolysis
time (days)

% DNA in
cells

% DNA in
autolysate

S. cerevisiae 0 1.2 –
5 0.77 0.38
10 0.54 0.60

K. marxianus 0 2.7 –
5 2.0 0.73
10 1.0 1.0

Table 4 RNA in yeast cells and autolysate of K. marxianus and
S. cerevisiae during autolysis

Yeast Autolysis
time (days)

% RNA in
cells

% RNA in
autolysate

S. cerevisiae 0 8.0 –b

0.5 1.6 5.6
10 0.8 6.0

K. marxianus 0 10 –
5 3.5 6.0
10 1.5 7.0

Table 5 Recovery of carbohydrate, protein, DNA and RNA in the
autolysate of Kluyveromyces marxianus compared to other yeast
species (expressed as % of initial dry weight of cells)

Yeast species Autolysis
time (days)

Carbohydrate Protein DNA RNA

Kluyveromyces
marxianus

5 1.8 9.3 27 60
10 2.2 12 40 70

S. cerevisiae 2180 5 2.5 9.3 28 73
10 3.1 11.6 37 74

Kloekera apiculata
202

5 5.9 11.5 18 68
10 7.5 13.2 21 70

Candida stellata
8008

5 1.6 10.9 32 75
10 2.7 12.3 40 76
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of the RNA degradation products become entrapped or
associated with the cell residue that is removed from the
autolysate before analysis.

Proteins represented 55–57% of the dry weight of
both S. cerevisiae and K. marxianus, and approximate
the values reported by Peppler [28]. The hydrolysis
of cellular proteins and release of degraded proteins,
peptides and amino acids into the autolysates are
principal reactions of yeast autolysis. A complex of
proteinases and peptidases is responsible for these
reactions; however, details of the specific enzymes
involved and factors that regulate their action remain
poorly understood [3, 11, 16]. The values for the re-
covery of protein in this study (8.2–12%) in the extracts
(Table 6) approximate those reported by Hough and
Maddox [16] and by Hernawan and Fleet [14], and
suggest that only part of the cell protein is released
undegraded into the autolysate. This conclusion is also
evident from the data of others [14, 15, 33, 34, 35, 36].
However, when yeast autolysis was induced by addition
of accelerators such as commercial lytic enzymes, the
amount of protein released was significantly higher
(25% of dry cell weight) in comparison to yeast sus-
pensions without inductors [19]. These experiments
were performed at elevated temperatures and for
shorter periods of time.

The presence of amino acids in the autolysates sup-
ports the suggestion that cell protein is degraded and
released into the autolysate [14, 15, 33, 34, 35, 36]. In this
study, insignificant amounts of amino acids were de-
tected in the extracts after autolysis for 10 days. The
amino acid composition, however, was time-dependant.
The small quantities of amino acids detected could be
attributed to proteinases and peptidases that may also
have been released into the autolysates and continued
their action during the autolysis period. Furthermore,
degradation of the amino acids released could have been
exacerbated by the conditions of autolysis and the yeast
species used [15]. The amino acid composition of auto-
lysates of baker’s and brewer’s yeasts has been reported
previously [17, 20, 21, 25] and reflects considerable
variation. The presence of glutamic acid, although
in insignificant amounts, would be important for the
production of flavor profiles, as the threshold value for
flavor enhancement is only 0.01–0.03% [31].

From the results presented, it is concluded that differ-
ences between the yeast autolysates of K. marxianus and
S. cerevisiae are relatively minor. Consequently, we fur-
ther conclude that K. marxianus has potential as a source
of yeast autolysates for use in the food industry. The au-
tolysis process could be accelerated by addition of auto-
lysis promoters such as NaCl or ethyl acetate to keep the
autolysis time under 24 h. A short autolysis time would
have significant economic benefits, prevent the develop-
ment of contaminants and curb the actions of proteinases
and peptidases to yield desired components [24].

The greater metabolic flexibility of K. marxianus en-
ables it to be grown on a wider range of waste products.
Hence in this study, cells of K. marxianus were grown in
a lactose-based medium to evaluate production of yeast
autolysates, a value added product, and to propose a
treatment method for whey, a lactose-containing waste
stream of the dairy industry [22].
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